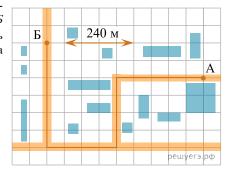

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

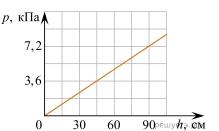
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


1. Среди перечисленных ниже физических величин векторная величина указана в строке:

- 1) перемещение; 2) путь; 3) амплитуда; 4) частота; 5) работа.
- 2. На рисунке изображены положения шарика, равномерно движущегося вдоль оси Ox, в моменты времени t_1 , t_2 , t_3 . Момент времени t_3 равен:

3. Если средняя путевая скорость движения автомобиля из пункта A в пункт B $\langle \upsilon \rangle = 19.0 \text{ км/ч (см.рис.)}, \text{ то автомобиль}$ находился в пути в течение промежутка времени Δt равного:

Примечание: масштаб указан на карте.


- 1) 128 c 2) 145 c
- 3) 162 c
- 4) 179 c
- 5) 216 c

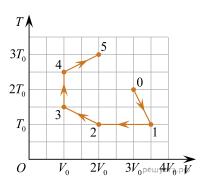
- **4.** Абсолютное удлинение Δl_1 первой пружины в два раза больше абсолютного удлинения Δl_2 второй пружины. Если потенциальные энергии упругой деформации этих пружин равны $(E_{\Pi 1} = E_{\Pi 2})$, то отношение жесткости второй пружины к жесткости первой пружины $\frac{k_2}{k_1}$ равно:
 - 3) 1,7 4) 2,0 5) 4,0 2) \sqrt{2}
- **5.** Металлический шарик массой $m = 80\ \Gamma$ падает вертикально вниз на горизонтальную поверхность стальной плиты и отскакивает от нее вертикально вверх с такой же по модулю скоростью: $\upsilon_2 = \upsilon_1$. Если непосредственно перед падением на плиту модуль

его скорости $\upsilon_1=5,0$ $\frac{{}^{\mathrm{M}}}{c},$ то модуль изменения импульса $|\Delta p|$ шарика при ударе о

- 1) $0.2 \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 2) $0.4 \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 3) $0.6 \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 4) $0.8 \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 5) $1.0 \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$

6. На рисунке изображён график зависимости гидростатического давления p от p, к Π а глубины h для жидкости, плотность ρ которой равна:

- 1) 1,2 $\frac{\Gamma}{CM^3}$ 2) 1,1 $\frac{\Gamma}{CM^3}$ 3) 1,0 $\frac{\Gamma}{CM^3}$ 4) 0,90 $\frac{\Gamma}{CM^3}$ 5) 0,80 $\frac{\Gamma}{CM^3}$

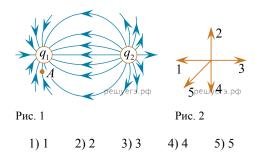

- 7. Число N_1 атомов титана $\left(M_1=48\ \frac{\Gamma}{MOTE}\right)$ имеет массу $m_1=2\ \Gamma,\,N_2$ атомов уг-

лерода $\left(M_2=12\ \frac{\Gamma}{\text{МОЛЬ}}\right)$ имеет массу $m_2=1$ г. Отношение $\frac{N_1}{N_2}$ равно:

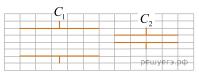
- 1) $\frac{1}{4}$ 2) $\frac{1}{2}$ 3) 1 4) 2 5) 4
- 8. При изобарном нагревании идеального газа, количество вещества которого постоянно, его температура увеличилась от $t_1 = 27$ °C до $t_2 = 67$ °C. Если начальный объем газа $V_1 = 60$ л, то конечный объем V_2 газа равен:

 - 1) 66 л 2) 68 л 3) 70 л 4) 72 л 5) 74 л

9. На T - V диаграмме изображён процесс $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$, проведённый с одним молем газа. Газ не совершал работу (А = 0) на участке:

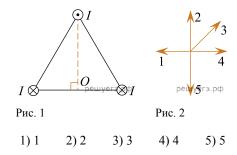


- 1) $0 \rightarrow 1$ 2) $1 \to 2$
- 3) $2 \rightarrow 3$


10. Если в результате трения о шерсть янтарная палочка приобрела отрицательный заряд q = -16 нКл, то общая масса m электронов, перешедших на янтарную палочку,

1) 9,1 · 10⁻¹⁷
$$\Gamma$$
 2) 8,8 · 10⁻¹⁷ Γ 3) 7,6 · 10⁻¹⁷ Γ 4) 6,4 · 10⁻¹⁷ Γ 5) 5,8 · 10⁻¹⁷ Γ

11. На рисунке 1 изображены линии напряженности электростатического поля, созданного точечными зарядами q_1 и q_2 . Направление напряженности \vec{E} электростатического поля, созданного системой зарядов q_1 и q_2 в точке A, обозначено на рисунке 2 цифрой:



12. На рисунке изображены два плоских воздушных ($\varepsilon = 1$) конденсатора C_1 и C_2 обкладки которых имеют форму дисков. (Для наглядности расстояние между обкладками показано преувеличенным.) Если ёмкость первого конденсатора $C_1 = 0.43 \text{ н}\Phi$, то ёмкость второго конденсатора C_2 равна:

- 1) 0.069 нФ
- 2) 0.086 нФ
- 3) 0.17 нФ
- 4) 1.1 нФ
- 1.4 нΦ

13. Два длинных тонких прямолинейных проводника, сила тока в которых одинакова, расположены в воздухе параллельно друг другу так, что центры их поперечных сечений находятся в вершинах прямоугольного равнобедренного треугольника (см. рис. 1). Направление вектора индукции В результирующего магнитного поля, созданного этими токами в точке О, на рисунке 2 обозначено цифрой:

14. В катушке, индуктивность которой $L = 0.05 \, \Gamma$ н, произошло равномерное уменьшение силы тока от I_1 3,5 A до I_2 за промежуток времени $\Delta t = 0,05$ с. Если при этом в катушке возникла ЭДС самоиндукции $\varepsilon = 2.5$ B, то сила тока I_2 равна:

- 1) 0.5 A 2) 1.0 A 3) 1.5 A 4) 2.0 A 5) 2.5 A

15. Поплавок, качаясь на волнах, распространяющихся со скоростью, модуль которой $\nu=1,8$ $\frac{\mathrm{M}}{c}$. Если расстояние между соседними гребнями волн l=2,0 м, то частота ν колебаний поплавка равна:

- 1) $0.30 c^{-1}$ 2) $0.45 c^{-1}$ 3) $0.60 c^{-1}$ 4) $0.75 c^{-1}$ 5) $0.90 c^{-1}$

16. На дифракционную решётку, период которой d = 2,20 мкм, падает нормально параллельный пучок монохроматического света. Если угол отклонения излучения в спектре второго порядка $\theta = 30^{\circ}$, то длина волны λ световой волны равна:

- 1) 550 нм
- 2) 600 нм
- 3) 650 нм
- 4) 700 HM
- 5) 750 нм

17. Катод фотоэлемента облучается фотонами энергия которых E=11 эВ. Если минимальная энергия фотонов, при которой возможен фотоэффект $E_{\min}=4$ эВ, то задерживающее напряжение U_3 , равно:

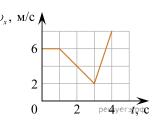
2) 4 B

3) 7 B 4) 11 B

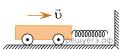
5) 15 B

18. На рисунке изображены два зеркала, угол между плоскостями которых $\beta=105^\circ$. Если угол падения светового луча АО на первое зеркало $\alpha=55^\circ$, то угол отражения этого луча от второго зеркала равен:

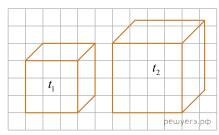
Примечание. Падающий луч лежит в плоскости рисунка.

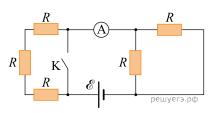

2) 50°

3) 75°

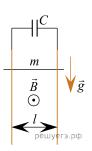

 90°

5) 105°


19. Материальная точка массой m = 2,0 кг движется вдоль оси Ox. График зависимости проекции Ox, м/с скорости Ox материальной точки на эту ось от времени Ox представлен на рисунке. В момент времени Ox с модуль результирующей всех сил Ox приложенных к материальной точке, равен ... Ox


- **20.** Деревянный ($\rho_{\rm д}=0.8~{\rm F/cm^3}$) шар лежит на дне сосуда, наполовину погрузившись в воду ($\rho_{\rm B}=1~{\rm F/cm^3}$). Если модуль силы взаимодействия шара со дном сосуда $F=9~{\rm H}$, то объём V шара равен ... дм 3 .
- **21.** Аэросани двигались прямолинейно по замерзшему озеру со скоростью, модуль которой $\upsilon_0=9,0$ $\frac{M}{C}$. Затем двигатель выключили. Если коэффициент трения скольжения между полозьями саней и льдом $\mu=0,050,$ то пусть s, который пройдут аэросани до полной остановки, равен ... м.
- **22.** К тележке массой m=0,49 кг прикреплена невесомая пружина жёсткостью k=400 Н/м. Тележка, двигаясь без трения по горизонтальной плоскости, сталкивается с вертикальной стеной (см. рис.). От момента соприкосновения пружины со стеной до момента остановки тележки пройдёт промежуток времени Δt , равный ... мс.

- **23.** По трубе со средней скоростью $\langle \upsilon \rangle = 9,0\,$ м/с перекачивают идеальный газ ($M=44\cdot 10^{-3}\,$ кг/моль), находящийся под давлением $p=414\,$ кПа при температуре $T=296\,$ К. Если газ массой $m=60\,$ кг проходит через поперечное сечение трубы за промежуток $\Delta t=10\,$ мин, то площадь S поперечного сечения трубы равна ... ${\rm cm}^2$
- **24.** Два однородных кубика (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого кубика $t_1 = 1,0$ °C, а второго $t_2 = 92$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t кубиков равна ... °C.



- **25.** Цилиндрический сосуд с идеальным одноатомным газом, закрытый невесомым легкоподвижным поршнем с площадью поперечного сечения $S=165~{\rm cm}^2$, находится в воздухе, давление которого $p_0=100~{\rm k}\Pi a$. Когда газу медленно сообщили некоторое количество теплоты, его внутренняя энергия увеличилась на $\Delta U=0.42~{\rm k}\mbox{Д}\mbox{ж}$, а поршень сместился на расстояние I, равное ... **см**.
- **26.** Абсолютный показатель преломления воды n=1,33. Если частота световой волны v=508 Т Γ ц, то длина λ этой волны в воде равна ... **нм**.
- **27.** В электрической цепи, схема которой приведена на рисунке, сопротивления всех резисторов одинаковы и равны R, а внутреннее сопротивление источника тока пренебрежимо мало. Если после замыкания ключа K идеальный амперметр показывал силу тока I_2 = 98 мA, то до замыкания ключа K амперметр показывал силу тока I_1 , равную ... мA.

28. Две частицы массами $m_1=m_2=0,400\cdot 10^{-12}$ кг, заряды которых $q_1=q_2=1,00\cdot 10^{-10}$ Кл, движутся в вакууме в однородном магнитном поле, индукция B которого перпендикулярна их скоростям. Расстояние l=100 см между частицами остаётся постоянным. Модули скоростей частиц $v_1=v_2=15,0$ $\frac{M}{c}$, а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции B поля равен ... мТл.

- **29.** В идеальном LC-контуре, состоящем из катушки индуктивности $L=20~{\rm M}\Gamma$ н и конденсатора емкостью $C=0,22~{\rm M}{\rm K}\Phi$, происходят свободные электромагнитные колебания. Если в момент времени, когда сила тока в катушке $I=40~{\rm MA}$, напряжение на конденсаторе $U=10~{\rm B}$, то полная энергия контура равна ... мкДж.
- **30.** В однородном магнитном поле, модуль индукции которого $B=0.25~\mathrm{Tr}$, находятся два длинных вертикальных проводника, расположенные в плоскости, перпендикулярной линиям индукции (см. рис.). Расстояние между проводниками $l=12.0~\mathrm{cm}$. Проводники в верхней части подключены к конденсатору, ёмкость которого $C=1~\mathrm{\Phi}$. По проводникам начинает скользить без трения и без нарушения контакта горизонтальный проводящий стержень массой $m=4.2~\mathrm{r}$. Если электрическое сопротивление всех проводников пренебрежимо мало, то через промежуток времени $\Delta t=0.34~\mathrm{c}$ после начала движения стержня заряд q конденсатора будет равен ... **мК**л.

